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Abstract

Because of the important role of preclinical animal studies in the development of

innovative medicines for human patients, many stem cell therapies have been

evaluated in animals. However, the last decade has seen the beginning of a shift

from stem cell treatments in animals only for the benefit of human patients to

including new therapeutic development of tissue stem cells primarily for animal

care. Not surprisingly, given their historical dependency, the new field of veteri-

nary stem cell medicine faces many of the same challenges as human stem cell

medicine. In this chapter, a shared major deficiency, the lack of stem cell-specific

dosing, is considered from the perspective that implementing dosing would

accelerate progress in veterinary stem cell medicine and human stem cell medi-

cine as well, as a follow-on. Since the vast majority of present-day veterinary

stem cell treatments utilize preparations of mesenchymal stem cells (MSCs), the

well-recognized uncertainties about this treatment source are discussed. The

challenges of quantifying the stem cell-specific dose of MSC preparations exem-

plify the general problem of determining the stem cell dose of all stem cell

treatments. Particular consideration is given to previous veterinary MSC treat-

ment studies that include measures that might relate to stem cell dosage. Kinetic

stem cell counting, a first potential solution to the tissue stem cell dosing problem,

is described, and the potential benefits of its future use are discussed. Adoption of

kinetic stem cell counting into the general practice of veterinary stem cell

medicine is presented as the key that can unlock the full potential of stem cells

in veterinary medical practice and perhaps human stem cell medical practice

as well.
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12.1 Introduction

The existence and role of stem cells in mature vertebrate tissues have been known for

more than a half-century. From the very beginning of their discovery, the potential of

tissue stem cells for medical applications has been recognized and pursued. In fact,

the discovery of the first tissue stem cells and the demonstration of their function in

mature tissue cell renewal, which occurred in experimental animal models, were

essentially in the format of future human stem cell replacement therapies (Till and

McCulloch 1961). Those earliest origins led to the present only successful stem cell

therapy in routine clinical practice, hematopoietic stem cell transplantation (HSCT).

After many decades of research and technological development, additional effective

stem cell therapies have been slow to emerge despite significant past and continuing

investments of research and development resources.

Like its origins, much of the progress made in stem cell medicine can be

attributed to research and development in animal models for stem cell therapy.

Earlier investigations with animals were targeted primarily to the development of

new approaches and applications for human stem cell medicine and not veterinary

medicine per se. However, in the recent decade, stem cell therapeutics, first modeled

in preclinical animal studies to gain approval for subsequent human clinical trials,

have begun to be evaluated as primary treatments for animal patients in veterinary

stem cell medicine (Gugjoo et al. 2018).

Because of the essential role of stem cells in the cellular tissue homeostasis of

vertebrates, the same challenges that slow progress in the achievement of effective

human stem cell therapies beyond HSCT are also faced in the development of

effective veterinary stem cell medicine. In this chapter, an important but often

unappreciated or understated challenge that greatly limits progress in both human

and veterinary stem cell medicine is presented and discussed with the perspective

that overcoming it would accelerate progress in veterinary stem cell medicine.

Remarkably, the challenge at issue is a long-standing deficiency in stem cell

medicine of a fundamental principle of medicine. For both animal patients and

human patients, stem cell therapies are administered without knowing the stem

cell dosage of the treatments (Sherley 2018a; Dutton et al. 2020).

In this chapter, the authors discuss the need for and benefits of advancing

veterinary stem cell medicine to being dosage-based like traditional veterinary

pharmaceutical medicine. The validation of the need for dosage-based stem cell

medicine accrues readily from consideration of the fundamental medical concept

that knowing the dosage of medicines is essential for the highest quality medical

treatment. In modern medicine, the importance of the utilization of medication
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dosage for effective development of new medicines and for the safe and efficacious

administration of approved medicines is a self-evidentiary principle. Yet, presently,

in both human medicine and veterinary medicine, stem cell clinical trials and even

approved stem cell therapies like HSCT are performed without knowing the dosage

of the stem cells in the treatments. In many human stem cell therapy clinical trials

using expanded cell treatments, stem cells are presumed to be present, but they could

be altogether absent (Paré and Sherley 2006; Taghizadeh and Sherley 2009; Sherley

2014).

Until very recently, the dosage limitation of tissue stem cell medicine was, for the

most part, unavoidable. No technologies were available for accurately determining

the dose of tissue stem cells that are characteristically a small fraction of the cells in

treatment preparations (Sherley 2018a; Dutton et al. 2020). In this chapter, the

authors describe a recently developed method for specific and accurate counting of

therapeutic tissue stem cells. Called “kinetic stem cell counting,” this new method

for counting therapeutic tissue stem cells has the potential to open a first path to the

implementation of quantitative dosing in veterinary stem cell medicine. The

predicted benefits from such innovation in veterinary stem cell medical practice

are discussed herein, with respect to their potential to compel similar modernization

of human stem cell medical practice.

12.2 Therapeutic Tissue Stem Cells in Animal Tissues

Tissue-specific stem cells (TSCs) have a well-defined role in animal tissues for

continuously renewing expiring mature differentiated tissue cells (Sherley 2005,

2006, 2013). Such tissue maintenance stem cells also have functions in repairing and

restoring injured or diseased tissues. These abilities of tissue stem cells account for

the effectiveness of HSCT, which reconstitutes the diseased or destroyed production

of mature hematopoietic tissue cells.

Another important class of tissue stem cell does not appear to be tissue-specific in

the usual sense. These mesenchymal stem cells (MSCs) are found in the interstitial

and perivascular spaces of many different tissues. Unlike TSCs, which, although

unipotent or multipotent, produce mature cells whose phenotypes are limited to the

differentiated lineages of their specific tissue or residence, MSCs exhibit multitissue

multipotency. In cell culture, their isolated preparations can produce differentiated

cells with adipogenic, osteogenic, or chondrogenic phenotypic properties (Pittenger

et al. 2019).

Both TSCs and MSCs have been shown to undergo asymmetric self-renewal

division (Fig. 12.1; Dutton et al. 2020). Asymmetric self-renewal is gnomonic for

vertebrate tissue stem cells (Sherley 2005, 2013). The unique and defining property

of TSCs and MSCs is their ability to divide continuously with the production of one

sister cell that retains all the stem cell properties of the parental stem cell and another

sister that is committed to producing maturing, differentiating, and expiring, lineage-

committed cells.
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TSCs and MSCs can divide symmetrically as well, in which case two stem cells

are produced. However, asymmetric self-renewal is the default state for tissue stem

cells, and they are inherently resistant to frequent symmetric division (Sherley

2013). These properties are consistent with their established role in tissue cell

homeostasis. They maintain a relatively undifferentiated state while continuously

generating cells committed to tissue-specific differentiation. As mature cells lose

function and undergo apoptosis, the asymmetric self-renewal of tissue stem cells

maintains a balancing supply of new differentiating cells. With tissue injury, stem

cells have the potential to symmetrically self-renew and establish new tissue units for

tissue repair (Fig. 12.1B).

Although most TSCs appear to have limited mobility, HSCs and MSCs are

naturally mobile stem cells. A significant body of literature describes the property

of these cells to migrate preferentially to sites of tissue damage (Kavanagh and Kalia

2011; Nitzsche et al. 2017; Szydlak 2019; Liesveld et al. 2020). Both have been

implicated for secreting cytokines and growth factors that induce processes that

promote the repair of injured tissues (Gnecchi et al. 2016; Liesveld et al. 2020). For

this reason, both HSCs and MSCs, and in particular MSCs, have become major

treatment foci for human stem cell clinical trials (Li et al. 2014) based on their

potential paracrine functions (Gnecchi et al. 2016; Liesveld et al. 2020). They are

also favorable for clinical investigation because of the availability of effective

methods for their isolation in higher yield than immobile TSC types. Essentially

all veterinary stem cell clinical trials focus on evaluating the potential therapeutic

paracrine effects of MSCs.

Fig. 12.1 Tissue stem cell asymmetric self-renewal division. (A) To maintain cellular tissue

homeostasis, tissue stem cells (bivalent circles) undergo asymmetric self-renewal divisions. In the

net, these divisions maintain the tissue fraction and stemness properties of stem cells while

simultaneously producing committed progenitor cells (uniform circles). Committed progenitor

cells continue division to produce mature differentiated functional cells (uniform squares). Mature

cells have a finite lifetime in tissues before their loss to tissue wear or cell death. (B) In a regulated

fashion (e.g., in response to tissue loss by injury), stem cells may undergo symmetric self-renewal

divisions to produce new asymmetrically self-renewing tissue units
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12.3 Therapeutic M[S]Cs in Veterinary Medicine

Veterinary medicine faces the same challenges as human medicine when it comes to

identifying and quantifying tissue stem cells of therapeutic interest. The recent

controversy around the nature of human MSCs extends to veterinary medicine as

well (Gomez-Salazar et al. 2020). Stem cells are often defined by an ensemble of

features that include both physical features and functional properties. For example,

MSCs are defined as in Table 12.1.

Though accurately descriptive, these properties are quite inadequate for

quantifying the effective stem cell dose of an MSC treatment. Unstated in the criteria

as presented is the crucial shortcoming that none of the listed biomarkers identify

MS(tem)Cs specifically. They also identify and co-quantify committed progenitor

cells that are produced by the division of stem cells. Committed progenitor cells,

though possessing many tissue precursor cell properties, do not have the unique

long-term tissue cell renewal properties of tissue stem cells. Whether they share

observed paracrine tissue reparative functions is unknown. For that matter, it could

be that the committed progenitor cells are the major sources of tissue repair factors.

This distinction could be an important consideration for sound evaluations of the

effectiveness of MSC treatments. It may also better inform current ideas on how to

explain the otherwise paradoxical long-term effects of MSCs because the cells

appear to have characteristically short lifetimes in tissues after transplantation

(Gnecchi et al. 2016).

Recent increased focus on the usually understated uncertainty about the specific

identities of the cellular constituents of MSC preparations has inspired calls to

change the name of these tissue cell preparations to something more representative

of their uncertain cellularity. Suggestions like MS(tromal)Cs and medicinal signal-

ing cells have been suggested (Caplan 2017; Gomez-Salazar et al. 2020). Although

these choices avoid giving the erroneous impression of homogenous stem cell

populations, they somewhat obscure the contribution of what many believe to be

the key therapeutic factors, the stem cells in the treatment preparations. Hereafter,

in this chapter, these cell populations will be referred to as M[S]Cs as a reminder

of this important uncertainty about their cellular constituents and their therapeutic

potential.

Table 12.1 Properties used to define MSCsa

• “Be plastic adherent

• Express the cell surface antigens CD105, CD90, and CD73

• Not express the cell surface antigens CD45, CD19, CD14, CD11b, CD34, CD79a, and

HLA-DR

• Have the capacity to differentiate into osteoblasts, chondrocytes, and adipocytes”
aSource: From Gomez-Salazar et al. (2020)
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12.4 Previous Attention to Indicators of Stem Cell Dose
in Veterinary M[S]C Treatments

Many animals have been treated with human stem cells as models for developing

human stem cell therapies (Pittenger et al. 2019; Gomez-Salazar et al. 2020). This is

particularly true for the clinical development of human M[S]Cs. Herein, the purpose

is to address stem cell therapies with species homologous animal stem cells

administered in veterinary medicine to improve the healing and health of animals,

as human pets, sport animals, and agricultural animals. In particular, studies are

highlighted that considered how available measures of tissue stem cell dosage relate

to treatment outcomes.

The vast majority of stem cell therapies in development for veterinary medicine

use M[S]Cs derived primarily from allogeneic sources. Examples include species-

specific M[S]C therapy for inflammatory conditions in pet cats (Quimby and

Borjesson 2018; Arzi et al. 2020), pet dogs (Gallant.com 2019–2020), and agricul-

tural animals like milk goats (Costa et al. 2019); diverse disorders (Barberini et al.

2018; Saldinger et al. 2020) and injuries in horses (Delco et al. 2020); and a

diverse range of treatments for companion animals, including wound healing, tissue

restoration, and inflammatory disorders (Kang and Park 2020). Though mostly

species-specific M[S]Cs have been used for companion animal therapies, human-

derived M[S]C treatments have also been evaluated (Kang and Park 2020). Human-

derived M[S]Cs have been investigated for the treatment of disorders in horses as

well (Barberini et al. 2018).

As for human stem cell medicine, veterinary medicine stem cell clinical trials

must address the need for evaluating the stability of stem cell treatments during

storage and transport. Similarly, veterinary studies are also challenged by the lack of

effective and convenient tests to monitor stem cell-specific stability, viability, and

function (Arzi et al. 2020).

There has been interest in defining metrics for veterinary stem cell treatments that

can be used to identify more effective choices for cell therapies. Human M[S]C

studies in animals and humans have established that the definable efficacy of M[S]C

preparations has a high degree of variability that has been attributed to many obvious

clinical factors and features like tissue source, isolation procedure, age, gender,

expansion culture conditions, storage procedures, etc. (Gomez-Salazar et al. 2020).

The importance of standardizing and optimizing the cell dose of stem cell treatments

has also been discussed (Kang and Park 2020). However, despite the understanding

that M[S]C preparations have heterogeneous cellularity (Costa et al. 2019; Pittenger

et al. 2019), variation in stem cell-specific fraction has gone unevaluated as a

possible cause of the variability or as an important factor for optimization and

standardization.

In veterinary investigations, Zhan et al. (2019) evaluated five different sources of

canine M[S]Cs derived from adipose tissue, bone marrow, umbilical cord, amnion

membrane, and placenta. Although all sources had similar expression of the surface

biomarker CD44, they differed in their cell proliferation rates, transcriptome, and

rate of multipotent differentiation. In earlier studies, Russell et al. (2016) reported a
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similar observation to that of Zhan et al. (2019) that MSCs derived from canine

adipose tissue had a significantly higher proliferative rate than those derived from

canine bone marrow. In dogs, differences in the proliferative rates of M[S]Cs derived

from young and old animals show associated differences in immunomodulatory

activity and osteogenic gene expression (Taguchi et al. 2019). Studies of equine

M[S]Cs showed that those derived from equine umbilical cord blood produced

mechanically superior cartilage tissue in vitro compared to those derived from

equine bone marrow. However, a possible relationship to differences in the stem

cell fraction was not considered (White et al. 2018).

There is also evidence that properties of veterinary M[S]Cs that suggest

differences in stem cell fraction are correlated with differences in the multilineage

differentiation capacity. Compared to canine adipose tissue M[S]Cs derived in

serum-supplemented medium, those derived in the serum-free medium had a shorter

lag phase for growth, a higher colony-forming efficiency, and an accelerated popu-

lation doubling time. These properties are expected for cultures with a higher stem

cell fraction (Devireddy et al. 2019). The serum-free M[S]Cs also maintained

multipotency to higher culture passages (Liu et al. 2018; Devireddy et al. 2019).

Recent studies in which human tissue stem cells were counted specifically have now

established that reductions in the proliferative rate of primary tissue cell cultures are

indicative of decreases in stem cell fraction (Dutton et al. 2020). Therefore, previous

differences in veterinary M[S]C functional capabilities that were associated with

differences in proliferative culture rate may, in fact, reflect differences in stem

cell dose.

12.5 The Tissue Stem Cell Counting Problem

Although the tissue stem cell counting problem has existed since the beginning of

stem cell biology history, it is either not recognized or poorly understood by many

who work in stem cell science and stem cell medicine, including veterinary stem cell

medicine (Sherley 2018b; Dutton et al. 2020). Until very recently, there has been no

method available to count vertebrate tissue stem cells specifically, meaning without

also counting committed progenitor cells, which invariably occur in tissue stem cell

compartments and their isolated preparations at a much higher fraction than the stem

cells.

Two very common misconceptions account for the state of general confusion on

capabilities for determining specific tissue stem cell number and, corresponding,

tissue stem cell-specific dose. The first is the misbelief that isolated tissue stem cell

populations are composed of high fractions of nearly homogeneous stem cells. Such

a constituency never exists. As tissue stem cells exist as rare fractions in intact

tissues, they continue to exist as a rare cell fraction in isolated tissue cell preparations

used for research and stem cell therapies. Applications that seek to expand stem

tissue stem cells in culture further aggravate this problem. Because tissue stem cells

continue to divide with asymmetric self-renewal division in culture, their fraction

has been shown to decrease dramatically with cell culture as more committed
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progenitor cells are produced and proliferate (Paré and Sherley 2006; Sherley 2014;

Dutton et al. 2020).

The second pervasive misconception is the belief that stem cells can be counted

specifically by flow cytometry. This error in understanding is partly due to flow

cytometry’s widely known sensitivity for identifying and quantifying rarified cell

subpopulations. The missing information that results in the error is a failure to

appreciate that no stem cell-specific biomarkers have been identified to date. Flow

cytometry requires cell type-specific biomarkers for specific cell detection and

quantification. All current tissue stem cell biomarkers (e.g., CD34, CD133, CD90)

are misnamed. The targeted molecules are expressed on tissue stem cells, but they

are also expressed on more abundant committed progenitor cells. The presence of

high numbers of committed progenitor cells in essentially all tissue stem cell

preparations precludes any chance of flow cytometry to be used to determine specific

stem cell number or stem cell-specific dose.

The extent of entrenchment of these misconceptions is evident from a review of

data obtained from a recent online survey conducted by the authors (https://

asymmetrex.com/stem-cell-counting-study/). The survey was conducted over

approximately a 1-year period and collected answers to a series of questions

designed to probe respondents’ level of knowledge about the current state of tissue

stem cell counting technologies. To date, 116 respondents completed the ongoing

survey and self-identified in the following occupational categories: undergraduate

student (19%), graduate student (12%), physician (9.5%), CEO (8.6%), postdoctoral

associate (6.9%), corporate research technical staff (6.9%), lab head (6.0%), project

manager (4.3%), investor (3.5%), academic research technical staff (2.6%), CSO

(2.6%), and other (18%). “Other” included respondents who self-reported in a

variety of academic, administrative, business, and industrial professions.

Of these respondents, about 40% (45) answered that “Homogenous tissue stem

cells are the cellular constituents of isolated or expanded tissue stem cell

preparations that are currently marketed and used for FDA-authorized stem cell

clinical trials, private stem cell clinic treatments, or research;” and about 56%

(66) answered that “Flow cytometry can be used to count tissue stem cells specifi-

cally.” Although respondents identifying as physicians were only 9.5% (11) of the

total, their responses are suggestive of a high degree of misinformation about the

stem cell dosing problem in stem cell medicine. Seven (64%) of the 11 responding

physicians stated that stem cell treatments were homogeneous stem cell preparations,

and 8 (73%) stated that stem cells could be counted specifically with flow cytometry.

If these early estimates are faithful representations of the current state of aca-

demic, medical, and industry knowledge about the cellular make-up of tissue stem

cell treatments and the quantification of their dosage, then the ideas developed in this

chapter are both needed and timely for inspiring a crucial awareness required for

greater progress in veterinary stem cell medicine.
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12.6 A Solution for the Tissue Stem Cell Counting Problem

Though confusion does exist regarding the state of technology for counting thera-

peutic tissue stem cells and determining their dosage, in surprising contrast, the

importance of these metrics in stem cell science and stem cell medicine is generally

well appreciated. In the same online survey described earlier, 82% (95 of

116 respondents) selected “Without knowing the stem cell-specific treatment dose,

it is not possible to soundly interpret the outcomes of tissue stem cell clinical trials”

as the reason “Why the tissue stem cell-specific dose is important for stem cell

clinical trials.” In 2020, The FDA’s Standards Coordinating Body (SCB 2020)

listed methods for determining the cell-specific dose of stem cell treatments as

needed standards for regenerative medicine.

Until 2020, there were no technologies available for specific and accurate deter-

mination of the stem cell dose of therapeutic stem cell treatments. All the available

in vitro methods described score both stem cells and committed progenitor cells.

Colony-forming unit (CFU) assays cannot distinguish cell colonies produced by

stem cells from those produced by early committed progenitor cells (Rich 2015). As

noted earlier, the lack of stem cell-specific biomarkers precludes quantification of

stem cell fraction by flow cytometry. Methods deploying assays for cellular enzymes

and metabolites also score the activities of both stem cells and committed progenitor

cells (Patterson et al. 2015).

In vivo cell transplantation assays allow detection of stem cells without

confounding with detection of committed progenitor cells. These assays detect

cells that can confer long-term reconstitution of human tissues in immunodeficient

animals. Tissue stem cells have this ability, but committed progenitors do not. These

assays have been limited primarily to applications for human HSCs using immuno-

deficient mice as cell transplant recipients; but there are also examples of their use to

study human HSCs in larger animals like sheep (Almeida-Porada et al. 2004). In the

case of human HSC assays in immunodeficient mice (typically NOD/SCID strains),

performing a limiting dilution series of the evaluated cells before transplantation

allows the application of Poisson statistical modeling to estimate the number of

HSCs in the starting sample. The assays are commonly called limiting dilution SCID

mouse repopulating cell (LDSRC) assays (Purton and Scadden 2007).

Though affording the requisite stem cell specificity for tissue stem cell counting,

the LDSRC assay has significant quantitative limitations and shortcomings. First, it

is expensive and takes a long time to perform. A single “count” for one treatment

sample may require as many as 50 mice to achieve sufficient statistical power for the

Poisson estimates, and these animals must be maintained for 16 weeks after trans-

plantation to confirm long-term tissue reconstitution. Second, there is a significant

quantitative shortcoming of the method that is often overlooked. The readout is a

function of both HSC number and engraftment efficiency. The quantitative modeling

assumes engraftment efficiency is 100% because there is no way to measure or

estimate it independently. To the extent that engraftment efficiency is less than ideal,

the LDSRC assay will underestimate the actual HSC number and dose; and because
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it varies from mouse to mouse and time to time, it undermines the quantitative

precision of HSC determinations.

Two other methodologies for specific quantification of tissue stem cells have been

described more recently. The first is a morphological approach based on detecting a

special characteristic of tissue stem cells that was first envisioned by John Cairns in

the 1970s (Cairns 1975). When they undergo asymmetric self-renewal division, both

animal and human tissue stem cells have been shown to nonrandomly co-segregate

the same oldest complement of chromosomal DNA strands (Panchalingam et al.

2020). Since asymmetric self-renewal is a tissue stem cell-exclusive feature, the

corresponding “immortal DNA strands” have been proposed as specific biomarkers

that might be targeted for specific quantification of tissue stem cells (Huh et al.

2015). This approach has been used to detect tissue stem cells in preparations of

tissue cells from agricultural animals like cows (Choudhary and Capuco 2012;

Capuco and Choudhary 2020). To date, immortal DNA strand detection has not

been validated as a means for determining the dose of stem cells in either human or

veterinary stem cell treatments. Though promising in concept, the detection of cells

with immortal DNA strands is technically challenging. Only recently have suitable

technical methods been achieved that might enable this method’s clinical validation

and future use (Huh et al. 2015).

A second quantitative methodology for specific and accurate determination of

tissue stem cell fraction, number, and dosage was reported last year (Dutton et al.

2020). The new approach, “kinetic stem cell counting,” provides specific quantifica-

tion of the tissue stem cells in complex tissue cell preparations. Kinetic stem cell

counting is an in vitro cell culture method that uses computational simulation to

discover the number of tissue stem cells responsible for the total cell proliferation of

serially passaged tissue cell cultures. The method is based on a stem cell-driven cell

production model that incorporates principles of in vivo tissue cell homeostasis.

After an initial foundational computational simulation analysis based on 3–4 weeks

of serial cell culture, kinetic stem cell counting yields simple mathematical

algorithms for specific stem cell counting. Thereafter, the kinetic stem cell counting

algorithms require only culture population doubling time data, produced from a few

days of cell culture, to compute the stem cell-specific fraction, number, and dose of a

tissue cell sample. Though not yet clinically validated, the kinetic stem cell counting

method has the potential to become a routine clinical tool for the determination of

stem cell dose for both veterinary stem cell medicine and human stem cell medicine

(Dutton et al. 2020).

12.7 Benefits of Quantitative Stem Cell Dosing for Stem Cell
Veterinary Medicine

Though still early in its development, the new kinetic stem cell counting technology

promises to make the long-needed implementation of stem cell dosing in stem cell

medicine not only feasible but also practical. Many benefits can be envisioned for
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both veterinarians and their patients when stem cell dosing is a routine practice for

veterinary stem cell medicine. Table 12.2 highlights several predicted benefits.

The most significant benefit is the increased treatment fidelity. Knowing the

dosage of the therapeutic agent in administered medicines is a fundamental tenet

of clinical medicine (Sherley 2018a). The stem cell treatment dosage is an important

factor for delivering reproducible stem cell treatments among different patients

and for the same patients over time. Poor treatment fidelity is a particular worry

for M[S]C therapies that use expanded stem cell populations. It is generally

recognized that culture expansion of all types of tissue stem cells proceeds with a

reduction in stem cell activity by all available measures (Shakouri-Motlagh et al.

2017). Though various explanations are considered to account for this loss—includ-

ing stem cell differentiation, loss of tissue factors, stem cell senescence, and stem cell

dilution—the resulting challenge is the same. The reduced dose of stem cells in

expanded cell populations is unknown. It is certainly variable from expansion lot to

expansion lot, and in some cases, unknowingly, it might be too low to be therapeu-

tically effective.

Stem cell dosage data could have a major impact on the progress and success of

stem cell medicine clinical trials. Of course, improved treatment fidelity would be

advantageous for clinical trial success. However, in addition, the availability of

precise quantification of stem cell dosage would improve the design of clinical trials

and the interpretation of their outcomes. Since compared patients rarely get treated

with ideally replicate treatment samples, currently, stem cell dose is an unknown

denominator in all stem cell clinical trial outcome data analyses. Beyond improving

overall treatment fidelity, knowledge of how stem cell dose varies among patients,

between treatment arms, among trial sites, and among trials would provide greater

statistical power for soundly detecting treatment effects.

Throughout the practice of stem cell medicine, potency is a controversial topic

(Rich 2015). The potency is a prediction of the effects of treatment before its

administration to patients. It is ideal for potency to be a quantitative measurement

that is able to predict the degree of clinical response with respect to the amount of the

treatment. Stem/progenitor biomarkers, like CD34 and CD90 for instance, are

qualitative indicators of the potency for HSC and M[S]C treatments, respectively.

However, neither provides a quantitative prediction of the effectiveness of stem cell

treatment (Ivanovic 2010). Other commonly applied characterizations of stem cell

Table 12.2 Future benefits of stem cell dosing in stem cell veterinary medicine

Benefit of stem cell dosing Current problem addressed

1. Increased treatment fidelity Unknown stem cell dosing reliabilitya

2. Increased statistical power Unknown dosage variance

Efficacy evaluation

3. Direct potency metric Potency

4. Improved biomanufacturing Uncertain production

5. Improved quality control and assurance Stem cell preservation, stability, transport
aIn particular for expanded stem cell treatments
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populations, like CFU and LDSRC assays, fall short as potency measures as well

(Purton and Scadden 2007; Rich 2015). Stem cell-specific fraction, number, or dose

determined by kinetic stem cell counting may prove to be the first effective potency

measures for stem cell medicine.

General implementation of effective kinetic stem cell counting by ancillary

industries that support veterinary stem cell medicine will also benefit veterinarians

and their patients. Companies engaged in biomanufacturing of expanded stem cell

treatments can improve their bioprocess engineering by monitoring, for the first

time, the stem cell-specific fraction of starting tissue sources, processing stages, and

final expanded production lots. Companies that store and ship either primary tissue

stem cell preparations or biomanufactured cells can better ensure the viability and

potency of stem cell treatments after storage and shipment. Currently, quality control

and quality assurance of such services are based on assessments of total cells, for

which the crucial stem cells are only a small fraction. Kinetic stem cell counting

could be used to investigate the widely applied but nonvalidated belief that such total

cell measurements are quantitatively informative about the status of the stem cells in

the preparations. If kinetic stem cell counting invalidates this belief, its stem cell

dose determinations can become the new basis for quality control and quality

assurance evaluations.

12.8 Conclusions and Future Perspective

Current veterinary stem cell medicine operates with the same deficiency presently

accepted by human stem cell medicine. Stem cell medicine treatments, whether

approved for a current medical practice or in clinical trials, proceed without knowl-

edge of the dosage of the administered stem cells. In this long-standing state of a

principal deficiency, unknowingly, treatments may occur without any stem cells

being delivered at all. This lack of qualitative, though more often quantitative,

treatment fidelity undermines the success of veterinary stem cell medicine. It renders

approved therapies uncertain and unreliable, and it confounds the design and

outcome interpretation of stem cell clinical trials and research studies. The way

out of the chronic widespread resignation to dose-less stem cell medicine is through

the implementation of new technologies that provide an effective means for specific

and accurate counting of therapeutic tissue stem cells. Recently described kinetic

stem cell counting may be such a technology (Dutton et al. 2020).

So far, human stem cell medicine has been slow to move to evaluating kinetic

stem cell counting as a solution for introducing specific dosing for stem cell

treatment production, storage, shipping, and administration to patients. As outlined

in this chapter focused on veterinary stem cell medicine, important benefits are

predicted to accrue to veterinarians, and more importantly to their patients, wherever

stem cell-specific dosing information is introduced in current stem cell medical

practice or its ancillary supporting industries. If this advantage proves true for

veterinary stem cell medicine, it will also prove true for human stem cell medicine.

Because of its historical role as the gateway through which medical innovations must
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travel to reach human patients, veterinary medicine has the positioning and opportu-

nity to lead to way to advancing quantitative stem cell dosing for stem cell medicine.
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